
Software Requirement & Specifications CS510

1

 CS510 Software Requirements and Specification

 Final term Syllabus Short Notes for Exams Preparation

 Week 1 to Week 15

 By

 Wahab Ahmad (BS Software Engineering)

 swamasoft@gmail.com

Week 1 Summery:

Why this course needed?

◦ Let’s visualize how it is difficult to understand others point of view

◦ To understand the role of Software Requirement and Specification

(SRS) in software projects.

◦ To understand the essential nature of SRS.

◦ To study current techniques, notations, methods, processes and tools

used in SRS.

◦ To gain practical experience in writing of the SRS document

Software Requirement basic concepts

What, Why and Who

SRS processes

Sequence of activities that need to be performed in the requirement phase

Requirement Elicitation

Process of discovering,

Reviewing, documenting, and understanding the user's needs and constraints for

the system

Requirement Modelling

Visualization of requirements for better understanding and analysis

Software Requirement & Specifications CS510

2

Requirement Analysis

Refining the user's needs and constraints

Requirement Specification

Process of documenting the user's needs and constraints clearly and precisely

Requirement verification and validation

Process of ensuring that system requirements are complete, correct, consistent, and

clear

Requirement Management

Scheduling, coordinating, and documenting the requirements engineering activities

Requirement Traceability

If the source of the requirements can be identified

What is a Requirement?

◦ Something required, something wanted or needed

◦ A statement of a system service or constraint

◦ A condition or capability that must be possessed by a system (IEEE)

Why requirement is needed?

◦ Requirements form the basis for all software products

Requirement Challenges

 Challenges

◦ Necessarily involves people interaction

◦ Cannot be automated

Software Requirement & Specifications CS510

3

 Why it is hard to Understand Requirements?

◦ Visualizing a future system is difficult

◦ Capability of the future system not clear, hence needs not clear

◦ Requirements change with time

Requirement Task

 Input

◦ Users need in mind of people

 Output

◦ precise statement of what the future system will do

Requirement Examples

◦ The system shall allow users to search for an item by title, author, or

by International Standard Book Number

◦ The system’s user interface shall be implemented using a web browser

Requirement Engineering (RE)

 What is a Requirement Engineering?

◦ Requirement Engineering is a new area which is started in 1993.

◦ The first International symposium was held On RE in 1993.

◦ It is the process, which is used to determine the requirements for a

software product systematically.

Requirement Engineering (RE)

 What is a Requirement Engineering?

Software Requirement & Specifications CS510

4

◦ The development and use of technology effective to elicit, specify and

analyse requirements from stakeholders (clients/users) that shall be

performed by a software system

Importance of RE

◦ “26% of the Software projects were considered a success.”

◦ Meaning that 74% have FAILED!

 Standish Group, CHAOS

Report, 2000

◦ “56% of the errors in a software can be traced back to the

requirements phase”

 Tom De Marco (a US

(Software Engineer)

Importance of RE

◦ The hardest part of building a software system is deciding precisely

what to build.

◦ No other part of the conceptual work is as difficult as establishing the

detailed technical requirements, including all of the interfaces to

people, to machines, and to other software systems.

◦ No other part of the work so cripples the resulting system if done

wrong.

◦ No other part is more difficult to rectify later

 Fred Brooks

◦ The hardest part of building a software system is deciding precisely

what to build.

◦ No other part of the conceptual work is as difficult as establishing the

detailed technical requirements, including all of the interfaces to

people, to machines, and to other software systems.

Software Requirement & Specifications CS510

5

◦ No other part of the work so cripples the resulting system if done

wrong.

◦ No other part is more difficult to rectify later

 Fred Brooks

◦ Software complexities

◦ Frequent change in user requirements

◦ Outsourcing offshore projects

◦ Cost of fixing errors

◦ Causes of failure

 Week 2 Summery

Characteristics of Good Requirements

 How to judge good and bad requirements?

◦ There are several criteria need to meet for good requirements.

◦ Usually overlooked in requirement process

◦ An excellent source to measure projects quality and progress.

 How to judge good and bad requirements?

◦ Characteristics of requirements vs. Characteristics of Requirement

Specification.

◦ Meaning become somehow different when considering a single

requirement or a set of requirements i.e. SRS

Key characteristics of good requirements

◦ Feasible

◦ Valid

◦ Unambiguous

Software Requirement & Specifications CS510

6

◦ Verifiable

◦ Modifiable

◦ Consistent

◦ Complete and

◦ Traceable

Requirement Feasibility

 Also considered as Realistic or possible

◦ Requirement is feasible if it is implementable within the given

constraints or resources like budget, time and available technology

etc.

 Example:

◦ Requirements to handle 10000 transactions/ second might be feasible

in given current technologies but might not be feasible with agreed

platform or technology.

Requirement Validity

 Normally termed as correct

 Requirement should be valid if and only if the requirement is one that

system shall meet.

 Validity can be done by reviewing with key stakeholders who decide

the success or failure of project

 “must” and “nice to have” requirements should clearly be demarcated

Software Requirement & Specifications CS510

7

 Example

 Car rental prices shall show all applicable taxes (including 6% state

tax).

Here mentioning 6% tax is incorrect because it is dependent

Unambiguous Requirements

◦ If a requirement has only one interpretation then it is called

unambiguous requirements

◦ Source of ambiguity is:

◦ Natural language

◦ Ambiguity level shows the quality of requirements

◦ Can effect project schedule and budget

◦ Example:

◦ Ambiguous statement:

◦ “The data complex shall withstand a catastrophe (fire, flood).”

◦ Unambiguous statement:

◦ The data complex shall be capable of withstanding a severe fire. It

shall also be capable of withstanding a flood

Verifiable requirements

◦ Also termed as testable requirements

◦ Requirements are verifiable if the developed system or application can

be tested to ensure that it meets the requirements.

◦ But product features are not easy to be verified

◦ Proper analysis is needed to make it testable

 Example:

Software Requirement & Specifications CS510

8

◦ The car shall have power brakes.

 Abstract so Not testable

◦ Detailed testable requirement:

◦ The car shall come to a full stop from 60 miles per hour within 5

seconds.

Requirements Modifiability

◦ Requirements are modifiable if any changes can be made to the

requirements easily, consistently and completely without any changes

to the existing structure and style of document.

◦ Redundancy is a key factor

Consistent Requirements

◦ A relationship among two or more requirements

◦ A requirement is consistent if it does not contradicts or in conflicts

with other requirements

◦ These requirements should either be external documents, standards or

other requirements.

◦ Example:

◦ Dates shall be displayed in the mm/dd/yyyy format.

◦ Dates shall be displayed in the dd/mm/yyyy format.

◦ Both internal and external consistency is required

Complete Requirements

◦ A requirement should be present for all conditions that can occur.

◦ Very difficult to Check

Software Requirement & Specifications CS510

9

◦ Can effect project schedule and budget

◦ There is no way to be sure that all requirements has been captured

◦ It’s because user can add new requirements at the end of the

requirement engineering phase.

Traceable requirements

◦ Requirements are traceable if the source of the requirements can be

identified

◦ It is the ability to describe and follow the life of requirements in

forward and backward direction

◦ Why tractability:

◦ Needed for requirement management and project tracking

◦ If requirements are atomic and having unique id then it would be

traceable.

 Week 3 Summery

Kinds of Software Requirements

◦ Functional requirements

◦ Non-functional requirements

◦ Domain requirements

◦ Inverse requirements

◦ Design and implementation constraints

Functional Requirements

◦ Statements describing what the system does

◦ Functionality of the system

◦ Functional requirements should be complete and consistent

Software Requirement & Specifications CS510

10

 Example

◦ The user shall be able to search either the entire database of patients

or select a subset from it (admitted patients, or patients with asthma,

etc.)

Non-functional Requirements (NFR)

 What are Non-functional Requirements?

◦ Quality factors, design criteria and metrics.

◦ Non-functional requirements define how the system supposes to be.

◦ Most non-functional requirements relate to the system as a whole.

◦ They include constraints on timing, performance, reliability, security,

maintainability, accuracy, the development process, standards, etc

◦ Often more critical than individual functional requirements

Domain Requirements

◦ Requirements that come from the application domain and reflect

fundamental characteristics of that application domain

◦ These can be both the functional or non-functional requirements

◦ Example

◦ Most banks do not allow over-draw on most accounts, however, most

banks allow some accounts to be over-drawn

◦

Inverse Requirements

◦ They explain what the system shall not do.

◦ Many people find it convenient to describe their needs in this manner

 Example

Software Requirement & Specifications CS510

11

◦ The system shall not use red color in the user interface, whenever it is

asking for inputs from the end-user

Design and implementation constraints

◦ They are development guidelines within which the designer must

work

◦ These requirements can seriously limit design and implementation

options

 Example

◦ The system shall be developed using the Microsoft Dot Net platform

◦ The system shall be developed using open source tools and shall run

on Linux operating system

Requirement Engineering (RE) Process

 What is process?

◦ A process is an organized set of activities, which transforms inputs to

outputs

◦ Processes document the steps in solving a certain problem

 Why process?

◦ They allow knowledge to be reused

◦ Processes are essential for dealing with complexity in real world

Process

 Example

◦ An instruction manual for operating a microwave oven

Software Requirement & Specifications CS510

12

◦ An instruction manual for assembling a computer or its parts

Software Processes

◦ Software engineering, as a discipline, has many processes

◦ These processes help in performing different software engineering

activities in an organized manner

 Examples

◦ Software engineering development process (SDLC)

◦ Requirements engineering process

◦ Design process

◦ Quality assurance process

Requirement Engineering (RE) Process

 What is RE process?

◦ The process(es) involved in developing the system requirements

collectively called RE process(es)

 Which process to be used?

◦ depends on:

◦ application domain

◦ the people involved and

◦ The organisation developing the requirements.

◦ Generic activities which is common to all processes

Software Requirement & Specifications CS510

13

◦ Requirements elicitation

◦ Requirements analysis

◦ Requirements validation

◦ Requirements management.

 Week 4 Summery

Requirements Modeling

Modeling

 A picture is worth 1000 words.

 A model is a representation of reality, like a model car, airplane.

 Most models have both diagrams and textual components.

Why Modeling?

 Visualization.

 Communicate with customer.

Software Requirement & Specifications CS510

14

 Reduction of complexity.

Requirements modeling

 A requirements model is a set of these diagrams, each of which focuses on a

different aspect of the users' needs.

 A requirements model provides greatest benefit if you use it to focus

discussions with the users or their representatives.

 Each model provides a particular type of information.

Why Requirements modeling?

 Modeling can guide elicitation.

 Modeling can provide a measure of progress.

 Modeling can help to uncover problems.

 Modeling can help us check our understanding.

Use case diagram

 A use case is a list of actions/tasks.

 Who uses the system and what they do with it.

Software Requirement & Specifications CS510

15

 Use case diagram can identify the different types of users of a system and

the different use cases

State machine diagram

 One of the challenges faced by requirements analysts is the need to

communicate the complex behavior of systems in an understandable yet

rigorous and verifiable way.

 State machine works well for this purpose.

 State machine captures information about states an object can go through

during its lifecycle.

 Use case modeling

 Use case diagrams describe what tasks the system performs.

 E.g. Order placement, a ticket reservation, assignment submission etc.

 Who uses the system

 A customer, a librarian, a student etc.

 Which user interacts with which use case.

Sample Use case model

Software Requirement & Specifications CS510

16

Components of use case

 Use case: subset of the overall system functionality.

 Actor: Anyone or anything that needs to interact with the system to

exchange information.

 Association: which actor interacts with which use case.

Software Requirement & Specifications CS510

17

 A Librarian updates a book
catalogue

Librarian

Update

 A passenger buys ticket

Passenger

Reserve
Seat

Buy ticket

Search for
available

seats

Software Requirement & Specifications CS510

18

 Includes: An include dependency, is a
generalization relationship denoting
the inclusion of the behavior
described by another use case.

Use
case

Use
case

<<includes>
>

Login Verify
empty

<<includes>
>

Software Requirement & Specifications CS510

19

 Ticket Reservation System

Passenger

Reserve
Seat

Buy ticket

Search for
available seats

<<includes>>

<<includes>>

<<Extends>>

Software Requirement & Specifications CS510

20

 Week 5 Summery

Air Ticket Reservation System

 Reservations on local system

 Passenger goes to client terminal in local office

 Searches flights/seats.

 Takes print of available seats.

 Booking staff confirms seat.

 Client terminal also displays flash news/updates.

 Admin can Add/Edit/Cancel flight schedule (Email is sent to passengers)

 Admin can cancel ticket.

 Admin can Add/Edit/Cancel Reservation

 Actors

 Passenger

 Admin

 Includes

◦ You have a piece
of behavior that is
similar across
many use cases

◦ Break this out as a
separate use-case
and let the other
ones “include” it.

◦ <<Includes>>
keyword is used.

 Extends

◦ A use-case is similar
to another one but
does a little bit more

◦ Put the normal
behavior in one use-
case and the
exceptional behavior
somewhere else.

◦ <<Extends>>
keyword is used

Software Requirement & Specifications CS510

21

 ?

 Use cases

 View Newsflash

 Print Schedule

 Search Seat

 Add Flight

 Reserve Seat

 Edit Reservation

 Cancel Reservation

 Use cases

 Send Email

 Add Flight

 Edit Flight

 Cancel Flight

 Add User

 Edit User

 Delete User

Software Requirement & Specifications CS510

22

Software Requirement & Specifications CS510

23

Steps in use case modeling

 Step-1: Identify business actors.

 Step-2: Identify business use cases.

 Step-3: Construct use-case model diagram.

 Step-4: Documents business requirements use-case narratives.

 Step-1: Identify business actors.

Software Requirement & Specifications CS510

24

 Who or what provides inputs to the system?

 Who or what receives outputs from the system?

 Are interfaces required to other systems?

 Who will maintain information in the system?

 Actors should be named with a noun or noun phrase

 Step-2: Identify business use cases.

 What are the main tasks of the actor?

 What information does the actor need from the system?

 What information does the actor provide to the system?

 Use cases should be named with a verb phrase specifying the goal of the

actor (e.g. Place Order)

 Step-3: Construct use-case model diagram

 Step-4: Documents business requirements use-case narratives.

Admin

Add Flight

Software Requirement & Specifications CS510

25

 Week 6 Summery

State machines

State machine modeling

 Many information systems deal with business objects that involve a series of

possible states.

 Describing a set of complex state changes in natural language creates a high

probability of overlooking a permitted state change or including a

disallowed change.

Software Requirement & Specifications CS510

26

 State machines provide a concise, complete, and unambiguous

representation of the states of an object or system.

 It relates events and objects.

Example:

 States - A state is denoted by a round-cornered rectangle with the name of

the state written inside it.

• Initial and Final States - The initial state is denoted by a filled black circle

and may be labeled with a name. The final state is denoted by a circle with a

dot inside and may also be labeled with a name.

• Transition - Transition from one state to the next is denoted by lines with

arrowheads.

 Trigger is the cause of the transition.

◦ A signal.

◦ An event.

◦ A change in some condition.

◦ The passage of time.

Door Open Door Closed

Software Requirement & Specifications CS510

27

State machines

(Advance concepts)

idle

Timed- out

disconnected

Busy tone

Fast busy tone

Dial tone

dialing

connecting

ringing

connected

Recorded message

On-hook On-hook

Off-hook

Digit(n)

Invalid no
valid

routed

Called phone answers

Called phone hangs up

Trunk busy

Num busy

Software Requirement & Specifications CS510

28

 Activity: an activity is a task that takes
time to complete.

State1

do:activity1

State2

do:activity2

Event

Software Requirement & Specifications CS510

29

 Attributes: Properties of events

 Condition: Guard condition Should be True for successful transition

 Action: An instantaneous operation

Nested State Diagram

 State diagrams can be structured to permit concise descriptions of complex

systems.

 It allows an activity to be described at a high level, and then expanded at

lower level by adding details.

Idle

do:Await

Printing

do:PrintEachPage

PrintRecieved

State1

do:activity1

State2

do:activity1

Event1 (attributes)[condition1]/action1

Idle

do:Await

Printing

do:PrintEachPage

PrintRecieved
(Data)[PapersInTray]/StartPrint

Software Requirement & Specifications CS510

30

Generalization

 Nested State diagram is form of generalization.

 States inherit transition from their super state

 Generalization is OR-relationship

Idle

Do:Wait

Busy

Do:Process

Read

Do:ReadMemory

Process

Do:Execute

Software Requirement & Specifications CS510

31

Generalization of transmission state

Idle

Do:Wait

Busy

Do:Process

Read

Do:ReadMemory

Process

Do:Execute

Busy

Software Requirement & Specifications CS510

32

Generalization of Accelerator and Brake states

Transmissio
n

Neutral Reverse Push R

Push N

Forwa
rd

First Second Third upshif
t

upshif
t downs

hift

downs
hift

Sto
p

Push N Push F

Accelera
tor Off On press

Relea
se

Accelera
tor Off

Brake

Off On press

Relea
se

Software Requirement & Specifications CS510

33

Aggregation and concurrency

 Aggregation means concurrency

 Overall state of aggregate object is combination of states of sub-objects

 Car

◦ Transmission

◦ Accelerator

◦ Brakes

 Sample state of a car

◦ Transmission: Neutral

◦ Accelerator: off

◦ Brakes: Off

◦ Sample state of a car

◦ Transmission: Reverse

◦ Accelerator: on

◦ Brakes: off

Software Requirement & Specifications CS510

34

 Week 7 Summery

Goal Oriented RE

Traditional RE

 Traditional RE approaches start from the initial requirements statements

(“What”).

 It ignores to focus on “Why” which is objective of GORE

 GORE is concerned with acquisition, modeling and analysis of stakeholder

purposes (“goals”) in order to derive functional and non-functional

requirements.

Goals:

 A goal is an objective the system under consideration should achieve.

◦ “Accounts should be secure”

◦ Goals can be expressed at different level of abstraction:

◦ High level goals

◦ Sub-goals

 Goals cover different types of concerns: functional and non functional.

Why GORE?

 Requirements Elicitation

Software Requirement & Specifications CS510

35

 Exploration of design choices

 Requirements completeness

 Requirements traceability

 Requirements negotiation

A simple goal model

Requirement vs. Goal

 A requirement is a particular way of achieving a goal.

 Goals are at a higher level than requirements

 Goals are more stable than corresponding requirements

NFR framework

Non Functional Requirement (NFR)

Framework

 Key concept is the notion of soft goal.

 Soft goals are goals that do not have a clear-cut criterion for their

satisfaction; may be partially satisfied.

 This construct allows representing goals concerning NFRs of the system as

well as ill-defined and high-level objectives of the stakeholders.

Software Requirement & Specifications CS510

36

Framework Activities

 Capturing NFRs for the domain of interest.

 Decomposing NFRs

 Identifying possible NFR operationalizations (design alternatives for

meeting NFRs)

 Dealing with ambiguities, tradeoffs, priorities, and interdependencies among

NFRs

 Supporting decisions with design rationale.

 Evaluating impact of decisions.

Soft goal Interdependency Graph

1. The main modeling tool that the framework provides is the soft goal

interdependency graph (SIG).

2. The graphs can graphically represent soft goals, soft goal refinements

(AND/OR), soft goal contributions (positive/negative), soft goal

operationalizations and claims.

Types of Soft goals in NFR framework

1. NFR soft goals represent non-functional requirements to be considered

2. Operational zing soft goals model lower-level (design) techniques for

satisfying NFR soft goals

3. Claim soft goals allow the analyst to record design rationale for soft goal

refinements, soft goal prioritizations, soft goal contributions, etc.

Soft goals

 Soft goals can be refined using AND, OR refinements with obvious

semantics.

 Also, soft goal interdependencies can be captured with positive (“+”) or

negative (“–“) contributions.

Software Requirement & Specifications CS510

37

Software Requirement & Specifications CS510

38

Software Requirement & Specifications CS510

39

 Week 8 Summery

KAOS (Knowledge Acquisition in Automated Specification)

 Methodology for requirements engineering enabling analysts to

• Build requirements models

• Derive requirements documents from KAOS models.

KAOS Ontology

• Objects are things of interest in the composite system whose instances may

evolve from state to state. Objects can be entities, relationships, or events.

• Operations are input-output relations over objects. Operation applications

define state transitions.

• An Agent is a kind of object that acts as a processor for operations. Agents

are active components that can be humans, devices, software, etc.

• A Goal in KAOS is prescriptive statement of intent about some system

whose satisfaction in general requires the cooperation of some of the agents

forming that system.

• Goals may refer to services (functional goals) or to quality of services

(non-functional goals).

• In KAOS, goals are organized in the usual AND/OR refinement

abstraction hierarchies.

• Goal refinement ends when every sub goal is realizable by some

individual agent assigned to it. That means the goal must be

expressible in terms of conditions that are monitor able and

controllable by the agent.

KAOS Models

1. Goal model where goals are represented, and assigned to agents

2. Object model which is a UML model that can be derived from formal

specifications of goals since they refer to objects or their properties

Software Requirement & Specifications CS510

40

3. Operation model which defines various services to be provided by software

agents.

4. Responsibility models for various agents

Building the Goal Model

 Good Practices

◦ Requirements Patterns, grown over time as organizational experience

with GORE matures

◦ Milestone driven refinement of goals as a guide for completeness

Example: Generic Goal Pattern

The Elevator Case Study

• Problem Statement:

You’ve just been hired by an elevator design company to improve performance

and quality of software development within the company. You’ve directly pointed

out a major weakness in the way software is developed: there are currently no

formal requirements engineering method in use. As a first challenge, you are asked

to build a KAOS model for a new elevator system to be designed.

Instantiating the Generic Goal Model

Software Requirement & Specifications CS510

41

Goals covered in case study

1. “Transportation requests satisfied” (i.e. functional need)

2. “Safe elevator system” (i.e. non-functional need)

Transportation Request Satisfied: Generic Pattern for Service Requests

Satisfaction

Software Requirement & Specifications CS510

42

A Note on Terminology

 Look at the previous figure and notice the way goals have been named: a

word followed by verb in its passive form. For instance, we have written

“Service requested” instead of “Request service” or “The passenger must

request the service”.

 The reason is to avoid confusion between goals and operations (agent

behaviors). Goals basically refer to system states we want to achieve or

maintain, cease or avoid. They do not refer to system state transitions.

Instantiating the Service Request Satisfaction Pattern

Software Requirement & Specifications CS510

43

Elevator Called: Generic Service Request Pattern

Goal Model Completeness Criteria

Software Requirement & Specifications CS510

44

 Completeness criterion 1: A goal model is said to be complete with respect

to the refinement relationship ‘if and only if’ every leaf goal is either an

expectation, a domain property or a requirement.

 Completeness criterion 2: A goal model is complete with respect to the

responsibility relationship ‘if and only if’ every requirement is placed under

the responsibility of one and only one agent (either explicitly or implicitly if

the requirement refines another one which has been placed under the

responsibility of some agent).

Elevator Called: Instantiating the Pattern

KAOS Object Model

 Used to define and document concepts of the application domain that are

relevant with respect to the known requirements and provide static

constraints on operational system.

 Objects pertaining to the stakeholders’ domain

 Other objects introduced on purpose to express requirements or constraints

on the operational system.

Types of Objects

Software Requirement & Specifications CS510

45

 Entities:

◦ Represent independent, passive objects.

◦ For instance, elevator doors, buttons, etc...

◦ ‘Independent’ means that their descriptions needn’t refer to other

objects of the model.

◦ They are ‘passive’ means they can’t perform operations.

 Agents:

◦ Represent independent, active objects.

◦ For instance, Elevator Company, passenger, elevator controller etc.

◦ They are active meaning they can perform operations.

◦ Operations usually imply state transitions on entities (for instance, the

“Ring Alarm” operation implies the following state transition on the

entity “Alarm”: status attribute changed from “Silent” to “Ringing”).

 Associations:

◦ Dependent, passive objects.

◦ ‘Dependent’ because their descriptions refer to other objects.

◦ For instance, the “At” association links a Cage to a Floor. An instance

of that association (say between Cage ‘c’ and Floor ‘f’) would hold if

cage ‘c’ is currently located on floor ‘f’.

◦ They are passive so they can’t perform operations.

Object Model: Example

Software Requirement & Specifications CS510

46

“Concerns” Relationship for Identifying Objects in Goal Model

Software Requirement & Specifications CS510

47

Example: Elevator System

Software Requirement & Specifications CS510

48

 Week 9 Summery

 The KAOS operation model describes all the behaviors that agents need to

fulfill their requirements.

 Behaviors are expressed in terms of operations performed by agents.

 Operations work on objects (defined in the object model): they can create

objects, trigger object state transitions and activate other operations (by

sending an event).

 Operations can directly be expressed by stakeholders during the interviews.

 Operations can be identified by looking at all the existing requirements.

 Operations are represented as ovals.

 Concerned objects are connected to the operations by means of Input and

Output links.

 Events are represented as those traffic signs that are used to indicate

directions.

Completeness criteria

 To be complete, a process diagram must specify:

◦ The agents who perform the operations

◦ The input and output data for each operation.

◦ when operations are to be executed.

◦ All operations are to be justified by the existence of some

requirements (through the use of operationalization links).

Software Requirement & Specifications CS510

49

KAOS Responsibility Model

 The responsibility model contains all the responsibility diagrams.

 A responsibility diagram describes for each agent, the requirements and

expectations that he’s responsible for, or that have been assigned to him.

 To build a responsibility diagram, the analyst reviews the different

requirements and expectations in the goal model and assigns an agent to

each of them.

 After all requirements and expectations are assigned a responsible agent, a

diagram is generated for each agent, listing all requirements and

expectations that he’s been assigned.

Software Requirement & Specifications CS510

50

 Week 10 Summery

Requirements Elicitation Techniques

• Requirements Elicitation

• Purpose of Requirements Elicitation

• Basic Requirements to use

• Types of Requirements Elicitation Techniques

• Capability of Requirements Elicitation Technique

• Pros and Cons of different elicitation techniques

Requirements Elicitation

• Requirements Elicitation (RE) is defined as the process of obtaining a

comprehensive understanding of stakeholder’s requirements

• RE is the initial and main process of requirements engineering phase.

• RE is a complex process Criteria for obtaining High quality requirements

Requirements Elicitation Methods Overview

• Interviews, Questionnaires, Observation, Joint Application Development

(JAD), Brainstorming etc.

• Which one is best?

• RE is considered an incomplete process in Requirement Engineering.

• Applying inappropriate techniques

Requirements Elicitation techniques

• Procedures to obtain user requirements, implement in the system to fulfill

user’s requirements.

• Selection of appropriate elicitation technique

• Factor (Business procedures, resources available, project type, individual

preference etc.)

• Characteristics of RE technique

• Type of Application

Software Requirement & Specifications CS510

51

Classification of different requirements elicitation techniques

• 1) Traditional Technique

Interviews, Questionnaires/Survey, and Document analyses.

• 2) Contextual Techniques

Observation, Ethnography and Protocol Analysis.

• 3) Collaborative/Group Techniques

Prototyping, Joint Application Development, Brainstorming, and Group Work

 4) Cognitive Techniques

Laddering, Card Sorting, Repertory Grids and Class Responsibility

Collaboration

Interviews

• Basic concepts

 verbal method, easy and effective, most employed

Types of Interviews:

Structured or Closed Interviews:

General characteristics

predefined questions, quantitative data, No generation of new idea,

• Pros:

• No biasing, few additional questions may be added to further add

clarification, Interview can be repeated

Cons:

• interviewee may be uncomfortable,

Semi-structured Interviews:

• combination of predefined and unplanned questions.

• Pros:

• Consistency,

• interviewee can share new ideas

Cons:

• Time consuming, interviewer may lose its focus, Training required,

• Findings are hard to generalize

Software Requirement & Specifications CS510

52

Unstructured or Open Interviews

• informal interview containing unplanned questions, Producing qualitative

data

• Pros:

• New ideas and opinions are generated.

• Due to informal approach interviewer may feel ease to properly answer

questions.

• Cons:

• Interviewer can be biased in asking questions.

• Difficult to repeat in case data reliability is checked.

Summary: Interviews

• Advantages:

• Good for complex topic, Rich in information, Ambiguities are clarified.

Interviewer can analyze emotions. Non-responsiveness remains low.

Provides overview of the whole system.

• Disadvantages:

• Small number of people involved, Information cannot be gathered from

large population, Quality of data gathered depends on the skills of

interviewer,

Document Analysis

• Analyzing and gathering information from existing documents

• Effective to initiate requirements elicitation process

• Why use this technique?

• An expert needs to study domain information thoroughly for the purpose of

adapting when existing system needs to be replaced or enhanced.

design documents, templates and manuals of existing systems

• Pros:

• · Helpful when stakeholders and users are not available.

• · Helps business analyst to get proper understanding of the organization

before meeting the stakeholders there.

• · Provides useful historical data.

Software Requirement & Specifications CS510

53

• · Can be useful to frame questions for interviews.

• · Can be used for requirements reuse.

• · Inexpensive technique.

• Cons:

• · Time consuming to find information from huge amount of documentations.

• · Sometimes valid information may not be available i.e. documents may be

outdated.

• · Periodic updating of documents is required.

• · Information might be incomplete.

Questionnaires/Surveys

• cheapest way of eliciting requirements

• When to use this technique?

• No face to face

• collect requirements from a larger group of population distributed over a

large geographical area and from different time zones

• Questionnaires must be clear, well-defined and precise besides including the

domain knowledge

• Pros:

• · Reach large number of people within a short time.

• · Useful when same question is asked to large number of people.

• · No biasing occurs.

• · It is economical.

• · Easy because multiple choice questions or true false or fill in the blanks are

included.

• Cons:

• · Cannot get further clarification regarding the problem what analyst actually

wants from the user.

• · Questions can be misinterpreted.

• · Sometimes useful feedback isn’t received.

• · To get further information other techniques like interviews can be used as

follow ups.

Software Requirement & Specifications CS510

54

• · Sometimes question ambiguities may arise.

• · Used for general purpose software.

Introspection

• Analysts work for what they imagine and observe by themselves how a

system design should be.

• This technique is effective with users who have a lot of experience of their

own fields but have less knowledge about the other fields as well as the new

system.

• Pros:

• · There are almost no costs for implementing this technique.

• · Easy to implement.

• · It can act as a good initial step to start requirements elicitation.

• Cons:

• · It is hard for analysts to imagine the environment in which the new system

works.

• · It doesn’t allow discussion with stakeholders and other experts. Therefore,

it is not encouraged if not used in combination with other techniques.

• · Analysts and stakeholders need to be well known about the domain.

Software Requirement & Specifications CS510

55

 Week 11 Summery

Contextual Techniques

• Techniques in this category are Observation, Ethnography and Protocol

Analysis.

• Observation/Social Analysis:

• The requirements engineer observes the user’s environment without

interfering in their work.

• This technique is used when customer is not able to explain what they want

to see in the system, how they work and when some ongoing processes are

to be monitored.

• combination with other requirements elicitation techniques like interviews.

• Passive observation

• Active observation

Observation

• Pros:

• · Authentic and reliable because analysts by himself goes to observe the

environment.

• · Can be useful to confirm and validate requirements collected through other

methods.

• · It is inexpensive method.

• Gives idea about how users will interact with the system.

• · Helpful in work measurements i.e. how long particular task takes to be

done

• Cons:

• · All the requirements cannot be checked in just a single session; multiple

sessions may be required.

• · Users can behave indifferently while they are interrupted for asking

questions in active observation.

• · In passive observation, it is difficult for analyst to make out why some

decisions are made.

• · It is time consuming

Software Requirement & Specifications CS510

56

Ethnography

• Study to understand Relationships between actors, workplace

• Used in combination with other elicitation techniques like interviews and

questionnaires

• Pros:

• · Helps to discover certain features of a work place in a shorter time period.

• · Helps understand how people work in an organization and how they

interact with each other.

• · Doesn’t need much resources to be effective.

• · Helps reveal critical events not observed by any other technique.

• · Useful in validating requirements

• Cons:

• · There is no detailed guide on how to perform ethnographic technique

effectively and therefore, it all depends on the skills of the person

performing it, the ethnographer.

• · It requires engineers to have a lot of experience to perform it.

• · New and unique features added to the system might not be discovered.

• · Fails to produce desirable results due to diverse population.

• · Focuses mainly on end-users.

• · Sometimes it can be time consuming.

• · Different backgrounds of users and ethnographers can result in

misunderstanding problems between them.

 Collaborative/Group Techniques

• Group elicitation techniques involve teams or groups of stakeholders who

applying their individual expertise on a particular issue agree upon a set of

decisions

• Prototyping :

• An iterative process

• Pros:

• · User involvement during development process.

• · Allows early user feedback for requirements refinement.

Software Requirement & Specifications CS510

57

• · Saves development time and cost.

• · Users and analysts get better understanding of the system.

• Cons:

• · The disadvantage is that when users get used to particular kind of system

they often resist changes.

• · Effort and cost estimation may get high as calculated earlier.

• · For complex systems, it can be time consuming.

Joint Application Development (JAD)

• JAD sessions are basically collaborative workshops that last for 4-5 days and

whose outcome is a proper set of user requirements.

• Pros:

• · Decreased time and cost of requirements elicitation.

• · Accelerates design of the system

• New and rapid idea generation leading to creative outputs.

• · Promotes user feedback.

• · More user satisfaction.

• · Good communication between stakeholders, analysts and other

professionals.

• · Visual aids and case tools used make the session interactive.

• Cons:

• · If not properly planned can lead to wastage of time and resources.

• · Requires trained facilitators.

• · Requires lots of planning and effort.

• · It is an expensive technique.

Software Requirement & Specifications CS510

58

Brainstorming

• It is an informal discussion where free expression of ideas is given to every

participant for a new kind of system to be developed

• Pros:

• · Costs very little and not much resources are needed.

• · Participants need not to be high qualified and each participant takes part

actively in the process.

• · It is comprehensible and easy to implement.

• · Helps in new ideas generation.

• · Helps in conflict resolution.

• · Each participant is equally allowed to speak and share ideas.

• Cons:

• · It is not suitable to resolve major issues.

• · If not organized properly can be time consuming.

• · Quantity of ideas doesn’t always equal their quality.

• · Can lead to repetition of ideas if participants are not paying proper

attention.

• · Some people due to extrovert nature may take over all the session and all

the time sharing their ideas and other people who are less outgoing will be

afraid to take the time sharing their views.

Group Work

• In this technique, stakeholders are invited to attend a meeting to elicit

requirements for projects

• Pros:

• · Quality requirements in a shorter period of time.

• · Saves cost as compared to conducting interviews of same number of

people

• Cons:

• · It takes lot of effort to bring all the stakeholders on the same table at the

same time because of their busy schedule and political aspects

Software Requirement & Specifications CS510

59

• Participants may have issues related to trust and may feel hesitated to

discuss critical or sensitive matters.

• · Members may get influenced by dominant people in the meeting leading to

biased results.

User Scenarios

• Scenarios are representation of user’s interaction with the system. It is a real

world example of how a system is used.

• Pros:

• · Well-developed scenario helps organizations to be proactive and work

specifically for the desired product.

• · Gives good clarifications regarding an activity or event its normal flow,

exceptional behavior, alternative paths.

• · People with no technical knowledge can also understand it.

• · Easy to understand as no special language is used to write them.

• · Ensures system is designed properly as end-user’s perspective is

considered for requirements elicitation.

• Cons:

• · It is difficult to draw useful scenarios.

• · It is not suitable for all types of projects even if they capture more

requirements.

• · They do not cover all the processes i.e. not the complete view of future

system.

Cognitive Techniques

• Laddering

• It is an interviewing technique to elicit stakeholder’s goals, values and

attributes.

• Pros:

• · Easy to understand requirements because of hierarchical nature.

• · Reuse of requirements saves time and cost.

• · Not good for building a new system.

Software Requirement & Specifications CS510

60

Laddering

• Cons:

• · Maintaining requirements is a difficult task while adding or deleting any

user requirement anywhere in a hierarchy.

• · Technique becomes complex when requirements are in large number.

• · Expert opinion or initial data is must to elicit requirements.

• · It is too long and tiring technique

Card Sorting

• It is a knowledge elicitation technique in which stakeholders are asked to

sort cards according to domain entity names using index cards or some

software packages.

• Pros:

• · It is fast and inexpensive.

• · It is accessible through internet so the participants that are geographically

remote can take part in it.

• · It is reliable and easy technique.

• · Helpful in providing good understructure.

• · It is an established technique.

• · Useful in gathering qualitative data.

• · It involves real inputs from the users.

• · Makes information structured to be fed into information process

Software Requirement & Specifications CS510

61

 Week 12 Summery

Requirement Change Management

 Requirements get changed during the course of development. It is almost

impossible to stop the requirements from changing. Different software

development approaches tackle changing requirement in different ways.

Unlike Waterfall or document driven approaches of software development,

agile methodologies welcome change during the course of software

development but at the same time manage the changes in a systematic

manner.

Agile Manifesto

 Agile focus and prefer more on individual’s capabilities and expertise and

their interaction rather than tools, techniques and processes.

 Agile concentrate to have working application rather than formality of

having large documentation.

 Agile highly contemplate to have a very close relationship with customer in

terms of continuous and constant conversation rather than contract

negotiation.

 Agile assures to adopt and respond frequently over change request rather

than following a plan.

Extreme Programming (XP)

 Extreme Programming is the most famous agile technique. XP use story

cards for elicitation. A user story is the description that provides business

value to the customer

 These rules are described below:

 The Planning Game

 Small Releases

 Metaphor

 Simple Design

 Tests

 Refactoring

 Pair Programming

 Collective Ownership

Software Requirement & Specifications CS510

62

 Continuous Integration

 40-hour Week

 On-site customer

 Coding Standard

Scrum

 Scrum is another popular agile technique used to develop and manage

software. The following figure explains the activities performed in Scrum.

Rational Unified Process

 RUP---- Document Driven approach

 RUP Phases, RUP Disciplines

 Extensive planning, Codified Process, Heavy Documentation, Big

Design up Front

 Strengths:

• Straightforward, methodical and structured nature,

Predictability, stability and high assurance

 Weaknesses

• Slow adaptation to rapidly changing business requirements

• A tendency to be over budget

• A tendency to behind schedule

• Failed to provide dramatic progress in productivity, simplicity

and reliability

 XP and Scrum-- Agile Software Development Approaches

 Iterative and Incremental development, Customer collaboration,

Frequent Delivery, Light and fast development, Light documentation

 Strengths:

• Short development cycle, Higher customer satisfaction, Low

bug rates, Quick adaptation to rapidly changing requirements

• Highest Priority Work, Constant Feedback, Control over Cost

and Schedule

 Weaknesses

Software Requirement & Specifications CS510

63

• Significant document reduction, Heavy dependence on

individual knowledge, Not suitable for critical safety systems,

Not suitable for large scale systems, Frequent change effect cost

and schedule, Managed prioritization, Organizational structure

Agile (XP and Scrum) requirements change management process

 The agile change management process handles changes in the beginning of

each iteration of the development cycle. It may be a sprint in Scrum or

iteration in XP and so on. The key stakeholders in change management

process are the managers, developing team and off course customers or

product owner.

 As agile’s development period is considerably short for a particular

iteration therefore it is understood that all the requirements cannot be

implemented in one go therefore there is a pile or stack of requirements and

the relevant stakeholders have to decide which requirements to implement in

the one iteration. Therefore, the prioritization is also a continuous process in

agile development and the requirement stack is constantly updated as a result

of update.

Change Management Process

 This aspect of Agile shows a different picture from that of traditional

development where requirements are collected once and changes made in

that requirement set are rare. Here agile is welcoming the change even after

every iteration. Therefore, agile is gaining wide acceptance in today’s

development where we also have high speed development environments.

lifecycle of change management in agile

 Start: In the start of each iteration, the team takes the highest priority

requirement that can be completed in the specified iteration period. This

requirement which is now going to be implemented is well understood with

the help of customer and other related stakeholders and documents etc.

Necessary planning, documentation or modeling can also be done at this

stage so as to achieve the goal within the specified time and budget.

 Middle: During development they may take help from customer as well as

from other relevant stakeholders to have better understanding of the

Software Requirement & Specifications CS510

64

requirement. The aim is to build the software that best meets the

requirement.

 End: The working product developed can be deployed and it is preferable to

deploy so as to take the feedback from the end-users. The acceptance can

also be run on the developed software so that the necessary quality can also

be ensured.

What Kind of Tool Do We Need?

 Word processor (Microsoft Word with templates…)

 Spreadsheet (Microsoft Excel…)

 Industrial-strength, commercial RM tools

 IBM/Tele logic DOORS, IBM Requisite Pro, Borland CaliberRM…

 Internal tools

 GenSpec (Hydro-Quebec).

 Open source RM tools

 OSRMT: http://sourceforge.net/projects/osrmt

 Bug tracking tools (free or not)

 Bugzilla…

 Collaboration tools (free or not)

TWiki.

Software Requirement & Specifications CS510

65

 Week 13 Summery

Requirement Change Management Process

Comparison between Agile and Conventional Philosophy

 Both Agile and Document Driven (companies following traditional

approaches) companies face similar issues with respect to requirements

management but they use to handle it in different ways. Some of the

differences between these two approaches that have been identified as a

result of a study are explained below:

 Changing requirements (88%--13%):

 Reason for Requirement Change (knowledge Deepening):

Comparison

 Requirements Gathering Process (complete Specification/incrementally):

 Means of Communication (document/Onsite customer):

 Contracts with Clients(Strict/flexible):

 Attitudes towards Change (Difficult task/Welcome):

 Relationship with Customer(satisfactory/Close):

Freezing the Requirements

 Embracing requirement changes in Agile does not mean that requirement

could be changed at any stage of the software development process. What it

really means is that unlike traditional approaches like waterfall model where

you do not have the privilege to request requirement changes after the start

of development cycle, here in agile the customer or the product owner have

an opportunity to add, modify or remove any requirement from the

requirement stack.

 In fact Agile has laid down a process in every technique to accept change in

an organized way for next iteration instead of forcing to implement the new

requirement in the current release.

 XP and OpenUP allows accepting change to a certain extent during the

development iteration but recommends suggesting the requirement for next

iteration.

Software Requirement & Specifications CS510

66

Requirements Prioritization

 Nature of Agile development lifecycle demands

 Stakeholders status in the beginning

 feedback after every development iteration

 agile development framework allows the stakeholders to re-prioritize the

requirements

 factors like market uncertainty, technical uncertainty, project duration and

project budget that demands that the requirements should be analyzed and

re-prioritized

Value Oriented Prioritization

 Many studies have been carried out to propose good and scientific methods

of prioritization

 One of the techniques for requirement prioritization was named as “Value

Oriented Prioritization”. This technique suggests that the company or the

stakeholders should identify the business value areas like Sales, Marketing,

Strategic, Customer Retention etc. Then a positive numeric value should be

associated with each of these business value areas.

 After that, values are also assigned to each requirement after negotiation and

consultation with all the relevant stakeholders.

 Along with identifying the business value areas, the associated risks should

also be identified and a certain negative value should also be assigned to

each risk as shown in fig.

 Then all the requirements are listed and given a numeric value against

business value areas as well as to the risk associated with that business

value. In this way the weight of each requirement can be calculated against

each business value area and similarly the weight of risks can also be

identified. The final weight of a requirement can be calculated by

subtracting the sum of weights of the risks from the sum of weights of

business values against each requirement.

Evaluation

 Requirements Evaluation from End user’s perspective

 Usability

 Usability Evaluation

Software Requirement & Specifications CS510

67

 Usability Evaluation Methods

 The process of systematically collecting data that informs us about what it is

like for a particular or group of users to use a product for a particular task in

a certain type of environment.

Why, what, where, and when to evaluate:

 Why: to check that users can use the product and that they like it.

 What: a conceptual model, early prototypes of a new system and later, more

complete prototypes.

 Where: in natural and laboratory settings.

 When: throughout design; finished products can be evaluated to collect

information to inform new products.

Usability

Usability has been defined by the International Standards Organization (ISO) as

“the extent to which the product can be used by specified users to achieve specified

goals with

 effectiveness

 efficiency

satisfaction

 Metrics used to measure Usability:

1. Time to complete a task

3. Fraction of task completed

4. Fraction of task completed in a given time

5. Number of errors

6. Time spent on errors

Usability Evaluation Methods

 Testing

 Inspection

 Inquiry

Software Requirement & Specifications CS510

68

 Week 14 & 15 Summery

 What is traceability?

o “the degree to which a relationship can be established between two or

more products of the development process, especially products having

a predecessor-successor or master-subordinate relationship to one

another.” [IEEE-610]

 Requirements Traceability:

o The requirements traceability is the ability to describe and follow the

life of a requirement, in both a forward and backward direction.

Requirement Traceability (RT)

 Why requirement Traceability

◦ Finding missing requirements

◦ Finding unnecessary requirements

◦ Certification and compliance

◦ Change impact analysis

◦ Maintenance and

◦ Project tracking etc.

Classification of Requirement Traceability

 Backward-from traceability

Links requirements to their sources i.e documents or people

 Forward-from traceability

Links requirements to design and implementation components

 Backward-to traceability

Links design and implementation components back to requirements

 Forward-to traceability

Links requirements back to their sources

Software Requirement & Specifications CS510

69

Categories of requirement traceability

 Requirements-sources traceability

Links the requirement and their sources which specified the requirement

 Requirements-rationale traceability

Links the requirement with a description of why that requirement has been

specified

 Requirements-requirements traceability

Links requirements with other requirements which are, in some way, dependent

on them

 Requirements-architecture traceability

Links requirements with the sub-systems where these requirements are

implemented

 Requirements-design traceability

 Links requirements with specific hardware or software components in the

system, which are used to implement the requirement.

 Requirements-interface traceability

 Links requirements with the interfaces of external systems, which are used in

the provision of the requirements

How is tracing performed?

 Each element is given a unique identifier

◦ Element – requirement, design attribute, test, etc

 Linkages done manually and managed by a CASE tool

 Traceability tables are made

◦ Matrix

Traceability matrix

 A traceability matrix is a document that co-relates any two-baseline

documents that require a many-to-many relationship to check the

completeness of the relationship.

 It is used to track the requirements and to check the current project

requirements are met.

Software Requirement & Specifications CS510

70

Types of Traceability Matrix

 Types of Traceability Matrix

◦ Forward traceability

◦ Backward or reverse traceability

◦ Bi-directional traceability (Forward Backward)

 Advantage of Requirement Traceability Matrix

◦ It confirms 100% test coverage

◦ It highlights any requirements missing or document inconsistencies

◦ It shows the overall defects or execution status with a focus on

business requirements

Requirement traceability Tools

 CASE Tools

 Characteristics

◦ Hypertext linking

◦ Unique identifiers

◦ Syntactical similarity coefficients

 Problems

◦ Hypertext linking and syntactical similarity does not consider context

◦ Unique identifiers do not show requirement information

◦ Choosing architecture view and classification schemas will always be

manual

 Caliber-RM

◦ Centralized repository

◦ Requirements traceability across the lifecycle

◦ Impact analysis

Rational Dynamic Object Oriented Requirements System(DOORS)

 DOORS

◦ Telelogic

◦ “capture, link, trace, and manage”

Software Requirement & Specifications CS510

71

◦ For large applications

Verification and Validation

 Verification:

 Process in which we check a product against its specifications.

 White box, black box testing

 Validation:

 Process in which we check expectations of the users who will be using it.

 Inspection, Formal Technical Review

Defects

 software without any defects

 No, it is almost impossible to develop software without having any defect.

Software and defects go side-by-side during software development. It is

impossible to build a product in first instance without presence of any

defects and these two cannot be separated.

Black box testing

 In this type of testing, a component or system is treated as a black box and it

is tested for the required behavior. This type of testing is not concerned with

how the inputs are transformed into outputs. As the system’s internal

implementation details are not visible to the tester. He gives inputs using an

interface that the system provides and tests the output. If the outputs match

with the expected results, system is fine otherwise a defect is found.

Structural testing (white box)

 As opposed to black box testing, in structural or white box testing we look

inside the system and evaluate what it consists of and how is it implemented.

The inner of a system consists of design, structure of code and its

documentation etc. Therefore, in white box testing we analyze these internal

structures of the program and devise test cases that can test these structures.

Defect Removal Process

 Steps you take to check the presence of the defects

 I will run the scenario as described in the bug report and try to reproduce the

defect.

Software Requirement & Specifications CS510

72

 If the defect is reproduced in the development environment, I will identify

the root cause, fix it and send the patch to the testing team along with a bug

resolution report.

Cyclomatic complexity

 E = Number of Edges

 N = Number of Nodes

 V(G) = E - N + 2

Requirements Documents

 What is requirement document?

 Software requirements specifications or SRS

 The requirements document is a formal document used to

communicate the requirements to customers, engineers and managers

 Requirements includes:

 The services and functions which the system should provide

 The constraints under which the system must operate

 Overall properties of the system

 Users of the requirements

 System customers

 Managers

 System engineers

 System test engineers

 System maintenance engineers

 How to Organize an SRS?

 Clients/developers may have their own way of organizing an SRS

 US Department of Defense

 NASA

 IEEE/ANSI 830-1993 Standard

 IEEE Std. 830-1998

Software Requirement & Specifications CS510

73

 Characteristics of good SRS

◦ Correct

◦ Unambiguous

◦ Complete

◦ Consistent

◦ Verifiable

◦ Modifiable

◦ Traceable

Parts of IEEE/ANSI Standard 830-1993

◦ Introduction

◦ General description

◦ Specific requirements

◦ Appendices

◦ Index

 1.1 Purpose of the requirements document

 1.2 Scope of the product

 1.3 Definitions, acronyms, and abbreviations

 1.4 References

 1.5 Overview of the remainder of the document

 General description

 2.1 Product perspective

 2.2 Product functions

 2.3 User characteristics

 2.4 General constraints

 2.5 Assumptions and dependencies

Software Requirement & Specifications CS510

74

Specific Requirements

 Covering functional, non-functional, and interface requirements.

 These should document external interfaces, functionality, performance

requirements, logical database requirements, design constraints,

system attributes, and quality characteristics

General discussion on IEEE Standard

 It is good starting point for organizing requirements documents

 First two sections are introductory chapters about background and

describe the system in general terms

 The third section is the main part of the documents and the standard

recognizes that this section varies considerably depending on the type

of the system

 “The End”

