MIDTERM EXAMINATION Fall 2009 MTH101- Calculus And Analytical Geometry

Time: 60 min Marks: 42

Calculus & Analytical Geometry-I

Question No: 1 (Marks: 1) - Please choose one

The base of the natural logarithm is

► 2.71 ► 10 ► 5 ► None of these Question No: 2 (Marks: 1) - Please choose one A line $x = x_0$ is called ------ for the graph of a function f if $f(x) \rightarrow +\infty$ or $f(x) \rightarrow -\infty$ as x approaches x_0 from the right or from the left

Horizontal asymptotes

None of these

Vertical asymptotes

Question No: 3 (Marks: 1) - Please choose one

If a function satisfies the conditions

f(c) is defined $\lim_{x \to c^{+}} f(x)$ Exists $\lim_{x \to c^{+}} f(x) = f(c)$

Then the function is said to be

Continuous at c
 Continuous from left at c

- Continuous from right at c
- ► None of these

Question No: 4 (Marks: 1) - Please choose one

f''(x) < 0 on an open interval (a,b) then f is ------ on (a,b)

- None of these
 Concave up
- Concave down
- Closed

Question No: 5 (Marks: 1) - Please choose one

Suppose that $\int f and g$ are differentiable function of x then

Suppose that f and g are differentiable functions of x then

$$\frac{d}{dx}[f][g] =$$

$$[f'][g] - [f][g']$$

$$= g^{2}$$

$$[f'][g']$$

$$= [f'][g] + [f][g']$$

$$= [f'][g] - [f][g']$$

Question No: 9 (Marks: 1) - Please choose one

Question No: 10 (Marks: 1) - Please choose one

f'(x) > 0on an open interval (a,b), then which of the following statement is correct?

_Let

- f is concave up on (a, b).
- f is concave down on (a, b).
- f is linear on (a, b).

y =
$$(x^3 + 2x)^{37}$$

. Which of the following is correct?
 $dy = (37)(x^3 + 2x)^{36}$
 dx
 $dy = 111x^2(x^3 + 2x)^{36}$
 dx
 $dy = (111x^2 + 74)(x^3 + 2x)^{36}$
 $dy = (111x^2 + 74)(x^3 + 2x)^{38}$
 dx

Question No: 14 (Marks: 1) - Please choose one

If
$$x > 0$$
 then $d [\ln x] =$
 1
 x
 1
 x
 $\ln 1$
 x

Question No: 15 (Marks: 1) - Please choose one

 $\log_{h} ac = - - - - - -$

$$b = \frac{\log_b a + \log_b c}{\log_a b + \log_c b}$$
$$b = \frac{\log_{a+c} b}{\log_{a+c} b}$$
$$b = b$$
None of these

Question No: 16 (Marks: 1) - Please choose one

Question No: 19 (Marks: 1) - Please choose one

 $\log_{h} a^{r} =$ $a \log_{h} r$ \log_{h} $\log_b a$ $\log_b r$ $\log_b a + \log_b r$ Question No: 20 (Marks: 1) - Please choose one Let a function f be defined on an interval, and f and x_1 denote points in that $f(x_1) \leq f(x_2)$ whenever $x_1 < x_2$ then which of the following statement is interval. If correct? \blacktriangleright ^{*f*} is an increasing function. \blacktriangleright *f* is a decreasing function. \blacktriangleright *f* is a constant function. Question No: 21 (Marks: 1) - Please choose one Let a function f be defined on an interval, and let x_1 and x_2 denote points in that $f(x_1) \geq f(x_2)$ $\frac{<\lambda_2}{>}$ then which of the following statement is interval. If whenever correct? ▶ ^f is an increasing function. \blacktriangleright ^{*f*} is a decreasing function. \blacktriangleright f is a constant function. Question No: 22 (Marks: 5) $y = \sqrt{x^2 + 1}$ Differentiate w.r.t. x by chain rule